176 lines
7.2 KiB
Python
176 lines
7.2 KiB
Python
import asyncio
|
|
import logging
|
|
import sqlite3
|
|
from datetime import datetime, timedelta
|
|
from pathlib import Path
|
|
|
|
import discord
|
|
import pandas as pd
|
|
|
|
from msg import message_df, full_reaction_df, message_dict, LOGGER, reaction_df
|
|
|
|
LOGGER = logging.getLogger(__name__)
|
|
|
|
|
|
class MsgData:
|
|
msgs: pd.DataFrame
|
|
reactions: pd.DataFrame
|
|
lock: asyncio.Lock
|
|
|
|
@classmethod
|
|
async def create(cls, client: discord.Client, **kwargs):
|
|
self = MsgData()
|
|
self.lock = asyncio.Lock()
|
|
self.msgs: pd.DataFrame = await message_df(client, **kwargs)
|
|
self.msgs = self.msgs.sort_values('created')
|
|
self.reactions: pd.DataFrame = full_reaction_df(self.msgs['object'].tolist())
|
|
return self
|
|
|
|
@classmethod
|
|
def from_sql(cls, db, local_tz='US/Central'):
|
|
if isinstance(db, (str, Path)):
|
|
con = sqlite3.connect(db)
|
|
elif isinstance(db, sqlite3.Connection):
|
|
con = db
|
|
|
|
self = MsgData()
|
|
self.msgs: pd.DataFrame = pd.read_sql('select * from msgs', con=con, index_col='id')
|
|
self.msgs['created'] = pd.to_datetime(self.msgs['created']).dt.tz_convert(local_tz)
|
|
self.reactions: pd.DataFrame = pd.read_sql('select * from reactions', con).set_index(['msg id', 'emoji'])
|
|
return self
|
|
|
|
def to_sql(self, db):
|
|
if isinstance(db, (str, Path)):
|
|
con = sqlite3.connect(db)
|
|
elif isinstance(db, sqlite3.Connection):
|
|
con = db
|
|
else:
|
|
raise TypeError(f'db argument is not a valid type: {type(db)}')
|
|
|
|
self.msgs.drop('object', axis=1).to_sql(
|
|
name='msgs',
|
|
con=con,
|
|
if_exists='replace',
|
|
index=True,
|
|
index_label=self.msgs.index.name
|
|
)
|
|
self.reactions.drop('object', axis=1).to_sql(
|
|
name='reactions',
|
|
con=con,
|
|
if_exists='replace',
|
|
index=True,
|
|
index_label=self.reactions.index.name
|
|
)
|
|
|
|
def __str__(self):
|
|
return str(self.msgs) + '\n\n' + str(self.reactions)
|
|
|
|
def __repr__(self):
|
|
return f'<{__name__}.{self.__class__.__name__} with {self.msgs.shape[0]} messages and {self.reactions.shape[0]} reactions>'
|
|
|
|
def __getitem__(self, item):
|
|
if isinstance(item, str):
|
|
return self.emoji_messages(emoji_name=item).sort_values('count', ascending=False)
|
|
elif isinstance(item, int):
|
|
return self.reactions.loc[pd.IndexSlice[item, :],].fillna(0).applymap(int)
|
|
|
|
async def add_msg(self, message: discord.Message):
|
|
async with self.lock:
|
|
mdict = message_dict(message)
|
|
mdict.pop('id')
|
|
self.msgs.loc[message.id] = pd.Series(mdict)
|
|
LOGGER.info(f'Added message id {message.id} from {message.author}: {message.content}')
|
|
|
|
async def update_reaction(self, msg: discord.Message):
|
|
async with self.lock:
|
|
# Drop all the reactions for this message id, if there are any
|
|
try:
|
|
self.reactions.drop(msg.id, level=0, axis=0, inplace=True)
|
|
except KeyError as e:
|
|
pass
|
|
|
|
# If there are reactions on the message after the change
|
|
if len(msg.reactions) > 0:
|
|
new = reaction_df(msg)
|
|
self.reactions = pd.concat([self.reactions, new])
|
|
LOGGER.info(str(new.droplevel(level=0, axis=0).loc[:, 'count']))
|
|
|
|
if msg.id not in self.msgs.index:
|
|
await self.add_msg(msg)
|
|
|
|
return new
|
|
|
|
def emoji_messages(self, emoji_name: str, days: int = None) -> pd.DataFrame:
|
|
"""Creates a DataFrame of the messages that have reactions with a certain emoji. Includes a 'count' column"""
|
|
counts: pd.DataFrame = self.emoji_counts(emoji_name)
|
|
|
|
# Get the ids of messages that that have the targeted emoji
|
|
message_id_counts: pd.Index = counts.index.drop_duplicates()
|
|
|
|
# There could be a situation where a message id in message_id_counts isn't actually in the self.msgs DataFrame
|
|
# Filter to keep only the messages that have actually been captured in the self.msgs DataFrame
|
|
message_id_counts: pd.Index = message_id_counts[message_id_counts.isin(self.msgs.index.get_level_values(0))]
|
|
|
|
# If there were actually some message ids found
|
|
if message_id_counts.shape[0] > 0:
|
|
res: pd.DataFrame = self.msgs.loc[message_id_counts]
|
|
|
|
res['count'] = counts
|
|
|
|
if days is not None:
|
|
res = res[res['created'] >= (datetime.today() - timedelta(days=days)).astimezone()]
|
|
|
|
return res.sort_values('created', ascending=False)
|
|
else:
|
|
raise KeyError(f'No messages found with {emoji_name} reactions')
|
|
|
|
def emoji_counts(self, emoji_name: str) -> pd.Series:
|
|
"""Creates a Series indexed by message id and with the number of reactions with emoji_name as values"""
|
|
assert isinstance(emoji_name, str), f'emoji_name must be a string'
|
|
try:
|
|
return self.reactions.loc[pd.IndexSlice[:, emoji_name], 'count'].droplevel(1).sort_values(ascending=False)
|
|
except KeyError as e:
|
|
LOGGER.error(f' {emoji_name} not found out of {self.unique_emojis.shape[0]} unique emojis')
|
|
LOGGER.error(f'{self.reactions.index.get_level_values(1)}')
|
|
raise
|
|
|
|
@property
|
|
def unique_emojis(self) -> pd.Index:
|
|
return self.reactions.index.get_level_values(1).drop_duplicates()
|
|
|
|
def emoji_totals(self, emoji_name: str, days: int = None) -> pd.Series:
|
|
"""Creates a Series indexed by user id and with the number of reactions with emoji_name as values"""
|
|
return (self
|
|
.emoji_messages(emoji_name, days)
|
|
.groupby('user id')
|
|
.apply(lambda gdf: gdf['count'].sum())
|
|
.sort_values(ascending=False))
|
|
|
|
async def emoji_leaderboard(self, client: discord.Client, emoji_name: str, days: int):
|
|
counts: pd.Series = self.emoji_totals(emoji_name, days)
|
|
counts.index = pd.Index([(await client.fetch_user(user_id=uid)).display_name for uid in counts.index])
|
|
width = max([len(str(s)) for s in counts.index.values])
|
|
res = f'{emoji_name} totals, past {days} days\n'
|
|
res += '\n'.join(f"`{str(name).ljust(width + 1)}with {cnt:<2.0f} total`"
|
|
for name, cnt in counts.iteritems())
|
|
return res
|
|
|
|
def worst_offsenses(self, user: str, days: int):
|
|
cdf = self.emoji_messages('cancelled', days=days)
|
|
cdf = cdf[cdf['display_name'].str.contains(user, case=False)]
|
|
|
|
if cdf.shape[0] > 0:
|
|
res = f'{user}\'s top 5 cancellations in the last {days} days:\n'
|
|
res += f'\n'.join(
|
|
f'`{row["count"]:<2.0f}cancellations`\n{row["link"]}' for idx, row in cdf.iloc[:5].iterrows())
|
|
else:
|
|
res = f'No cancellations for {user} in the past {days} days'
|
|
|
|
return res
|
|
|
|
async def biggest_single(self, client: discord.Client, emoji: str, days: int) -> str:
|
|
data: pd.Series = self.emoji_totals(emoji_name=emoji, days=days)
|
|
user: discord.User = await client.fetch_user(user_id=data.index[0])
|
|
LOGGER.info(f'User: {user.mention}')
|
|
return f'{user.mention} with {data.iloc[0]:.0f} over the past {int(days)} days'
|