import asyncio import logging import sqlite3 from pathlib import Path import discord import pandas as pd from discord import RawReactionActionEvent from msg import message_df, reaction_df, message_dict, LOGGER, convert_emoji, reaction_series, emoji_messages, \ emoji_totals LOGGER = logging.getLogger(__name__) class MsgData: msgs: pd.DataFrame reactions: pd.DataFrame lock: asyncio.Lock @classmethod async def create(cls, client: discord.Client, **kwargs): self = MsgData() self.msgs: pd.DataFrame = await message_df(client, **kwargs) self.msgs = self.msgs.sort_values('created') self.reactions: pd.DataFrame = await reaction_df(self.msgs['object'].tolist()) self.lock = asyncio.Lock() return self @classmethod def from_sql(cls, db): if isinstance(db, (str, Path)): con = sqlite3.connect(db) elif isinstance(db, sqlite3.Connection): con = db self = MsgData() self.msgs: pd.DataFrame = pd.read_sql('select * from msgs', con=con, index_col='id') self.msgs['created'] = self.msgs['created'].apply(pd.to_datetime, utc=True) self.reactions: pd.DataFrame = pd.read_sql('select * from reactions', con).set_index(['msg id', 'emoji']) return self def to_sql(self, db): if isinstance(db, (str, Path)): con = sqlite3.connect(db) elif isinstance(db, sqlite3.Connection): con = db self.msgs.drop('object', axis=1).to_sql( name='msgs', con=con, if_exists='replace', index=True, index_label=self.msgs.index.name ) self.reactions.to_sql( name='reactions', con=con, if_exists='replace', index=True, index_label=self.reactions.index.name ) def __str__(self): return str(self.msgs) + '\n\n' + str(self.reactions) async def add_msg(self, message: discord.Message): async with self.lock: mdict = message_dict(message) mdict.pop('id') self.msgs.loc[message.id] = pd.Series(mdict) LOGGER.info(f'Added message id {message.id} from {message.author}: {message.content}') async def update_reaction(self, client: discord.Client, payload: RawReactionActionEvent): payload.emoji: discord.PartialEmoji = convert_emoji(payload.emoji) chan: discord.TextChannel = await client.fetch_channel(channel_id=payload.channel_id) msg: discord.Message = await chan.fetch_message(payload.message_id) async with self.lock: try: self.reactions.drop(msg.id, level=0, axis=0) except KeyError as e: LOGGER.warning(e) if (new := await reaction_series(msg=msg)) is not None: new = new.set_index(['msg id', 'emoji']) self.reactions = pd.concat([self.reactions, new]) LOGGER.info(f'\n{str(new)}') def emoji_messages(self, emoji_name: str, days: int): res = emoji_messages(msg_df=self.msgs, react_df=self.reactions, emoji_name=emoji_name, days=days) if res is None: raise KeyError(f'No emojis found for {emoji_name}') else: return res def emoji_totals(self, emoji_name: str, days: int): return emoji_totals(edf=self.emoji_messages(emoji_name, days)) def emoji_leaderboard(self, emoji_name: str, days: int): df = self.emoji_totals(emoji_name, days) width = max(list(map(lambda s: len(str(s)), df.index.values))) res = f'{emoji_name} totals, past {days} days\n' res += '\n'.join( f"`{str(name).ljust(width + 1)}with {row['total']:<2.0f} total`" for name, row in df.iterrows() ) return res def cancellation_leaderboard(self, days): return self.emoji_leaderboard(emoji_name='cancelled', days=days) def worst_offsenses(self, user: str, days: int): cdf = self.emoji_messages('cancelled', days=days) cdf = cdf[cdf['display_name'].str.contains(user, case=False)] if cdf.shape[0] > 0: res = f'{user}\'s top 5 cancellations in the last {days} days:\n' res += f'\n'.join( f'`{row["count"]:<2.0f}cancellations`\n{row["link"]}' for idx, row in cdf.iloc[:5].iterrows()) else: res = f'No cancellations for {user} in the past {days} days' return res async def biggest_single(self, client: discord.Client, emoji: str, days: int) -> str: data = self.emoji_totals(emoji_name=emoji, days=days) username = data.index[0] reacted_msgs = self.emoji_messages(emoji_name=emoji, days=days) d = reacted_msgs.set_index('display_name')['user id'].drop_duplicates().to_dict() user: discord.User = await client.fetch_user(user_id=d[username]) LOGGER.info(f'User: {user.mention}') return f'{user.mention} with {data.iloc[0]["total"]:.0f} over the past {int(days)} days'