moved biggest_single and worst_offenses into RoboPage

This commit is contained in:
2021-08-15 14:07:44 -05:00
parent d0bf438fea
commit a306f22f13
2 changed files with 52 additions and 36 deletions

42
data.py
View File

@@ -93,6 +93,7 @@ class MsgData:
if len(msg.reactions) > 0:
new = reaction_df(msg)
async with self.lock:
# self.reactions = self.reactions.join(new, how='outer')
self.reactions = pd.concat([self.reactions, new])
LOGGER.info(str(new.droplevel(level=0, axis=0).loc[:, 'count']))
@@ -114,13 +115,17 @@ class MsgData:
# If there were actually some message ids found
if message_id_counts.shape[0] > 0:
# Select the relevant messages from the self.msgs DataFrame using the filtered message ids
res: pd.DataFrame = self.msgs.loc[message_id_counts]
# Add the 'count' column
res['count'] = counts
# If necessary, filter by days into the past
if days is not None and days > 0:
res = res[res['created'] >= (datetime.today() - timedelta(days=days)).astimezone()]
# return the message DataFrame, sorted by created (sent) time
return res.sort_values('created', ascending=False)
else:
@@ -142,32 +147,19 @@ class MsgData:
def emoji_totals(self, emoji_name: str, days: int = None) -> pd.Series:
"""Creates a Series indexed by user id and with the number of reactions with emoji_name as values"""
return (self
.emoji_messages(emoji_name, days)
.groupby('user id')
.apply(lambda gdf: gdf['count'].sum())
.sort_values(ascending=False))
messages = self.emoji_messages(emoji_name, days)
if messages.shape[0] > 0:
return (messages
.groupby('user id')
.apply(lambda gdf: gdf['count'].sum())
.sort_values(ascending=False))
else:
raise ValueError(f'No messages found for' + \
f' {type(emoji_name)}:{emoji_name}, {type(days)}:{days}')
# return pd.DataFrame()
async def emoji_user_counts(self, client: discord.Client, emoji_name: str, days: int):
async def emoji_user_counts(self, client: discord.Client, emoji_name: str, days: int = None):
"""Creates a Series indexed by user display_name with the number of reactions with emoji_name as values"""
counts: pd.Series = self.emoji_totals(emoji_name, days)
counts.index = pd.Index([(await client.fetch_user(user_id=uid)).display_name for uid in counts.index])
return counts
def worst_offsenses(self, user: str, days: int):
cdf = self.emoji_messages('cancelled', days=days)
cdf = cdf[cdf['display_name'].str.contains(user, case=False)]
if cdf.shape[0] > 0:
res = f'{user}\'s top 5 cancellations in the last {days} days:\n'
res += f'\n'.join(
f'`{row["count"]:<2.0f}cancellations`\n{row["link"]}' for idx, row in cdf.iloc[:5].iterrows())
else:
res = f'No cancellations for {user} in the past {days} days'
return res
async def biggest_single(self, client: discord.Client, emoji: str, days: int) -> str:
data: pd.Series = self.emoji_totals(emoji_name=emoji, days=days)
user: discord.User = await client.fetch_user(user_id=data.index[0])
LOGGER.info(f'User: {user.mention}')
return f'{user.mention} with {data.iloc[0]:.0f} over the past {int(days)} days'